
Contents

Application Note

Document No.: AN1083

APM32F4xx_ADC Application Note

Version: V1.0

Document No.: AN1083

www.geehy.com Page 1

1 Introduction

This application note provides a guide to how to configure and apply ADC interface on

APM32F4xx series, including interface block diagram, code implementation and application method.

APM32F4xx MCU has up to three 12-bit ADC, which share up to 21 external input channels and

3 internal channels, and provide self-calibration function. The internal channels provide the functions

of measuring the built-in temperature sensor voltage, reference voltage and backup power supply

voltage respectively. Each A/D conversion channel supports single, continuous, scan and intermittent

conversion. ADC conversion results can be set as left-aligned or right-aligned to be stored in 16-bit

data register, and support DMA access and setting analog watchdog.

http://www.geehy.com/

Document No.: AN1083

www.geehy.com Page 2

Contents

1 Introduction .. 1

2 ADC Introduction ... 3

2.1 ADC classification .. 3

2.2 A/D conversion principle .. 4

2.3 A/D conversion steps ... 4

3 ADC in APM32 .. 6

3.1 ADC structure .. 6

3.2 S/H circuit... 6

3.3 DAC circuit ... 7

3.4 Conversion steps ... 7

3.5 Conversion time ... 9

3.6 Converted value ... 10

4 Configuration and Application of ADC .. 11

4.1 Hardware design .. 11

4.2 Software design ... 11

4.3 Hardware method of improving sampling accuracy .. 19

4.4 Software method of improving sampling accuracy .. 19

5 Version History .. 22

http://www.geehy.com/

Document No.: AN1083

www.geehy.com Page 3

2 ADC Introduction

Analog to Digital Converter (ADC) is a device (circuit) that converts analog signals into digital

signals, for example, converting temperature, humidity, pressure, position and other information into

digital signals. However, because the digital signal itself has no practical significance, it only

represents a relative size. Therefore, ADC requires a reference analog quantity (REF) as the

conversion standard.

Figure 1 ADC Block Diagram

2.1 ADC classification

ADC can be divided into direct ADC and indirect ADC according to the working principle. It mainly

contains the following types:

Parallel comparison ADC;

SAR ADC;

Double-integral ADC.

The SAR ADC is a direct ADC. It is widely used in integrated ADC because of its medium

sampling rate, medium resolution, and use of fewer components when there are many bits (low cost).

Figure 2 ADC Classification

http://www.geehy.com/

Document No.: AN1083

www.geehy.com Page 4

2.2 A/D conversion principle

The function of A/D conversion is to convert continuous time and amplitude analog signals into

discrete time and amplitude digital signals. Therefore, A/D conversion generally requires four

processes: sampling, holding, quantization and coding.

2.3 A/D conversion steps

2.3.1 Sampling and holding

Sampling refers to discretization of analog signals in time, namely, converting continuous time

signals into a series of discrete sequences of signals with equal time interval. The amplitude of

discrete signal pulse depends on the input analog quantity.

2.3.2 Quantization and coding

Quantization is to use a limited number of amplitude values to approximate the original

continuously changing amplitude values, and change the continuous amplitude of analog signals into

a limited number of discrete values with certain interval. Coding is to express the quantized value with

binary digits according to certain rules. The following figure lists the process from quantization to

coding when the FSR of 12-bit ADC is 3.3V. Wherein:

N: Resolution, the number of bits used to quantize the input. Theoretically, the ADC with n-bit

output can distinguish 2n analog input voltages of different levels. As shown in the figure below, the

minimum distinguishable input voltage step LSB = FSR / 2n = 806uV;

FSR: Full-Scale Range;

LSB: Least Significant Bit;

MSB: Most Significant Bitt.

http://www.geehy.com/

Document No.: AN1083

www.geehy.com Page 5

Figure 3 Quantization and Coding

2.3.3 Conversion time

The conversion time is the time from triggering the conversion control signals of ADC to obtaining

the stable digital signals at the output end. This time is affected by ADC type, ADC clock and external

input impedance.

http://www.geehy.com/

Document No.: AN1083

www.geehy.com Page 6

3 ADC in APM32

The ADC in APM32 is a SAR ADC, which generates the comparison voltage VREF one by one,

compares them with the input voltage successively, and performs A/D conversion in an increasing

approximating method.

The conversion principle of SAR ADC is to sample (sampling) the input analog signal according to

the specified time interval and compare it with a series of standard digital signal. The digital signal

converges gradually until the two signals are equal (quantization), and finally the binary number

representing this signal is output (coding).

3.1 ADC structure

The structure mainly includes sampling and holding circuit (S/H), comparator (COMP), SAR logic

control circuit, clock and timing control circuit and DAC circuit.

Figure 4 ADC Structure

3.2 S/H circuit

The sampled pulse width is usually very short. Before the next sampling pulse arrives, the pulse

amplitude of the sampled value should be temporarily maintained for subsequent conversion.

Therefore, the holding circuit shall be added after the sampling circuit. The following figure is the

configuration block diagram of a simple sampling and holding circuit.

http://www.geehy.com/

Document No.: AN1083

www.geehy.com Page 7

Figure 5 S/H circuit

3.3 DAC circuit

Most DAC of SAR ADC use capacitive DAC to provide intrinsic tracking / holding function. The

capacitive DAC generates analog output voltage according to charge redistribution principle. The

capacitive DAC consists of N capacitor arrays with binary weight values and a "virtual LSB" capacitor.

3.4 Conversion steps

The number of conversion steps is equal to the resolution of ADC. For example, 10-bit ADC has

10 conversion steps, and each ADC clock generates a data bit. The following steps take 10-bit ADC as

an example. The sampling and holding state can be understood by referring to the above S/H

equivalent circuit. The following focuses on the status of quantization and coding.

http://www.geehy.com/

Document No.: AN1083

www.geehy.com Page 8

3.4.1 Quantization and coding status

In this status, each ADCCLK executes one step, and ADC outputs one digit after each step is

completed. The binary method is used for successive approximation to the accuracy (bits) of ADC.

The whole conversion process is shown in the figure below.

Figure 6 Quantization and Coding Status

3.4.1.1 Conversion example

For example, if 2.5V is input into the SAR ADC with reference voltage of 3.3V, the conversion

process is as follows.

In the first approximation step, MSB is set to 1 first. DAC compares 1/2 REF with VIN. If VIN > 1/2

REF, hold MSB = 1 (on the contrary, MSB = 0). Wait for the next ADCCLK and execute the next step.

Figure 7 ADC Conversion Approximation Step 1

http://www.geehy.com/

Document No.: AN1083

www.geehy.com Page 9

In the second approximation step, MSB moves back by 1 bit, and then compares 3/4 REF with VIN. If
VIN > 3/4 REF, hold MSB = 1 (on the contrary, MSB = 0). Wait for the next ADCCLK, and execute the
next step. When all bits are confirmed, output the coded value.

Figure 8 ADC Conversion Approximation Step 2

3.5 Conversion time

ADC conversion time in APM32F4xx = sampling cycle + conversion cycle.

3.5.1 Sampling cycle

It is determined by the sampling cycle setting. It should be noted that this value needs to match

the input impedance of the external circuit. So that it can be ensured that the sampling and holding

capacitors have enough time to charge at the adoption stage.

3.5.2 Conversion cycle

This value depends on the conversion accuracy of the ADC. The SAR ADC of APM32F4xx is 12

bits by default and can be configured as 12, 10, 8, and 6 bits.

http://www.geehy.com/

Document No.: AN1083

www.geehy.com Page 10

Table 1 Relationship between ADC Accuracy and Conversion Cycle

No. ADC accuracy Conversion cycle

1 12 bits 12 x ADCCLK

2 10 bits 10 x ADCCLK

3 8 bits 8 x ADCCLK

4 6 bits 6 x ADCCLK

3.6 Converted value

ADC converted value = (VIN x 2n) / VREF, wherein n is the resolution of ADC. Take the above

12-bit ADC as an example, then

ADC converted value = (VIN x 4096) / VREF.

http://www.geehy.com/

Document No.: AN1083

www.geehy.com Page 11

4 Configuration and Application of ADC

4.1 Hardware design

4.1.1 Input channel

The MINI Board has connected the channels of some ADC through the pin header, and relevant

IO can be used according to design requirements. ADC sampling is prone to external interference.

When using it, pay attention to the anti-interference design between pins and avoid the sharing of ADC

pins and other functional circuits.

4.1.2 Voltage input range

The voltage input range of ADC is VREF- ~ VREF+, VSSA and VREF- on the MINI board are

connected to GND, while VDDA and VREF+ are connected to VDD, so the voltage input range of ADC

on the MINI board is 0V ~ 3.3V.

4.2 Software design

The software design only explains key configurations, and some queries and logic codes are not

designed. For details, you can directly refer to supporting routines of this application description.

4.2.1 ADC initialization structure

ADC_Config_T structure is defined in the document of APM32F4xx_adc.h. The specific definition

is as follows:

/**

 * @brief ADC configuration Mode

 */

typedef struct

{

 ADC_RESOLUTION_T resolution;

 uint8_t scanConvMode;

 uint8_t continuousConvMode;

 ADC_EXT_TRIG_EDGE_T extTrigEdge;

 ADC_EXT_TRIG_CONV_T extTrigConv;

 ADC_DATA_ALIGN_T dataAlign;

 uint8_t nbrOfChannel;

} ADC_Config_T;

http://www.geehy.com/

Document No.: AN1083

www.geehy.com Page 12

Meaning of parameters in the structure:

resolution: used to configure the resolution of ADC. The resolution of ADC can be configured to 12

bits, 10 bits, 8 bits and 6 bits. As described in the SAR ADC conversion principle of this application

description, the higher the resolution of ADC is, the longer the relative conversion time is;

scanConvMode: Used to configure whether to enable the scan mode. Generally, it is configured as

DISABLE when single-channel A/D conversion is applied, and configured as ENABLE when

multi-channel A/D conversion is applied;

continuousConvMode: Used to configure single conversion or enable automatic continuous

conversion mode;

extTrigEdge: Used to configure the polarity of external trigger. If external trigger is not enabled, it

can be configured as ADC_EXT_TRIG_EDGE_NONE;

extTrigConv: Used to configure external trigger source;

dataAlign: Used to configure the data alignment method of ADC conversion results. Generally, we

configure it as the right-aligned mode according to the custom;

nbrOfChannel: Used to configure the number of A/D conversion channels.

4.2.2 ADC general initialization structure

ADC_ CommonConfig _T structure is defined in the document of APM32F4xx_adc.h. The specific

definition is as follows:

Meaning of parameters in the structure:

mode: Used to configure the working mode of ADC. There are three configuration items, namely,

independent mode, dual mode and triple mode;

prescaler: Used to configure the frequency division coefficient of ADC clock, which is provided by

PCLK2. PCLK2 divided by prescaler is the ADC clock;

accessMode: Used to configure DMA mode;

twoSampling: Used to configure the delay between two sampling stages.

/**

 * @brief ADC Common Init structure definition

 */

typedef struct

{

 ADC_MODE_T mode;

 ADC_PRESCALER_T prescaler;

 ADC_ACCESS_MODE_T accessMode;

 ADC_TWO_SAMPLING_T twoSampling;

} ADC_CommonConfig_T;

http://www.geehy.com/

Document No.: AN1083

www.geehy.com Page 13

4.2.3 Design of single-channel conversion software

Take "ADC_ContinuousConversion" as an example.

4.2.3.1 Configure ADC

After the GPIO clock is turned on, configure GPIO to analog input mode.

/*!

 * @brief ADC Init

 *

 * @param None

 *

 * @retval None

 */

void ADC_Init(void)

{

 GPIO_Config_T gpioConfig;

 ADC_Config_T adcConfig;

 /** Enable GPIOA clock */

 RCM_EnableAHB1PeriphClock(RCM_AHB1_PERIPH_GPIOA);

 /** ADC channel 0 configuration */

 GPIO_ConfigStructInit(&gpioConfig);

 gpioConfig.mode = GPIO_MODE_AN;

 gpioConfig.pupd = GPIO_PUPD_NOPULL;

 gpioConfig.pin = GPIO_PIN_0;

 GPIO_Config(GPIOA, &gpioConfig);

http://www.geehy.com/

Document No.: AN1083

www.geehy.com Page 14

Configure ADC working mode and turn on the continuous conversion mode.

Configure to turn on ADC interrupt, enable ADC and trigger the conversion by software.

/** ADC channel 0 Convert configuration */

ADC_ConfigRegularChannel(ADC1, ADC_CHANNEL_0, 1,

ADC_SAMPLETIME_112CYCLES);

 /** Enable complete conversion interupt */

 ADC_EnableInterrupt(ADC1, ADC_INT_EOC);

 /** NVIC configuration */

 NVIC_EnableIRQRequest(ADC_IRQn, 1, 1);

 /** Enable ADC */

 ADC_Enable(ADC1);

 /** ADC start conversion */

 ADC_SoftwareStartConv(ADC1);

}

/** Enable ADC clock */

 RCM_EnableAPB2PeriphClock(RCM_APB2_PERIPH_ADC1);

 /** ADC configuration */

 ADC_Reset();

 ADC_ConfigStructInit(&adcConfig);

 adcConfig.resolution = ADC_RESOLUTION_12BIT;

 adcConfig.continuousConvMode = ENABLE;

 adcConfig.dataAlign = ADC_DATA_ALIGN_RIGHT;

 adcConfig.extTrigEdge = ADC_EXT_TRIG_EDGE_NONE;

 adcConfig.scanConvMode = DISABLE;

 ADC_Config(ADC1, &adcConfig);

http://www.geehy.com/

Document No.: AN1083

www.geehy.com Page 15

4.2.3.2 ADC interrupt service function

After the completion of the conversion is detected, call back the interrupt service function. Read

the ADC converted value at this time, and then convert it into the corresponding voltage value, which

is affected by the quantization error and the anti-interference ability of the hardware. The unit of the

voltage converted here is mV.

4.2.4 Design of multi-channel scanning software

Take "ADC_MultiChannelScan" as an example.

4.2.4.1 Define common information

Here, the number of sampling channels of this sample is defined as 3, and the array

adcData[ADC_CH_SIZE] that will be used for DMA to store the scanning data of each channel of ADC

is defined. In addition, the address of ADC rule data register is macro-defined as ADC_DR_ADDR. All

the above information will be used in subsequent configuration and application.

/*!

 * @brief ADC interrupt service routine

 *

 * @param None

 *

 * @retval None

 */

void ADC_Isr(void)

{

 uint16_t adcData = 0;

 uint16_t voltage = 0;

 if (ADC_ReadStatusFlag(ADC1, ADC_FLAG_EOC))

 {

 ADC_ClearStatusFlag(ADC1, ADC_FLAG_EOC);

 adcData = ADC_ReadConversionValue(ADC1);

 voltage = (adcData * 3300) / 4095;

 printf("\r\n voltage : %d mV\r\n", voltage);

 }

}

http://www.geehy.com/

Document No.: AN1083

www.geehy.com Page 16

4.2.4.2 Configure DMA

Set the rule register address of ADC to the register address accessed by DMA, set the register to

increase and specify the buffer size as 3. Finally turn on the cycle mode.

Different channels and data streams of DMA specify the peripherals to which they belong. You

should pay attention to it when using.

/*!

 * @brief DMA Init

 *

 * @param None

 *

 * @retval None

 */

void DMA_Init(void)

{

 DMA_Config_T dmaConfig;

 RCM_EnableAHB1PeriphClock(RCM_AHB1_PERIPH_DMA2);

 dmaConfig.peripheralBaseAddr = ADC_DR_ADDR;

 dmaConfig.memoryBaseAddr = (uint32_t)&adcData;

 dmaConfig.dir = DMA_DIR_PERIPHERALTOMEMORY;

 dmaConfig.bufferSize = ADC_CH_SIZE;

 dmaConfig.peripheralInc = DMA_PERIPHERAL_INC_DISABLE;

 dmaConfig.memoryInc = DMA_MEMORY_INC_ENABLE;

 dmaConfig.peripheralDataSize = DMA_PERIPHERAL_DATA_SIZE_HALFWORD;

 dmaConfig.memoryDataSize = DMA_MEMORY_DATA_SIZE_HALFWORD;

 dmaConfig.loopMode = DMA_MODE_CIRCULAR;

/** save adc data*/

#define ADC_CH_SIZE 3

#define ADC_DR_ADDR ((uint32_t)ADC1_BASE + 0x4C)

uint16_t adcData[ADC_CH_SIZE];

http://www.geehy.com/

Document No.: AN1083

www.geehy.com Page 17

4.2.4.3 Configure ADC

The same as the configuration sequence of single-channel conversion, first turn on the

corresponding clock of the three channels to be scanned and configure them to analog input mode.

/*!

 * @brief ADC Init

 *

 * @param None

 *

 * @retval None

 */

void ADC_Init(void)

{

 GPIO_Config_T gpioConfig;

 ADC_Config_T adcConfig;

 ADC_CommonConfig_T adcCommonConfig;

 /** Enable GPIOA clock */

 RCM_EnableAHB1PeriphClock(RCM_AHB1_PERIPH_GPIOA);

 /** ADC channel 0 configuration */

 GPIO_ConfigStructInit(&gpioConfig);

 gpioConfig.mode = GPIO_MODE_AN;

 gpioConfig.pupd = GPIO_PUPD_NOPULL;

 gpioConfig.pin = GPIO_PIN_0 | GPIO_PIN_1 | GPIO_PIN_2;

 GPIO_Config(GPIOA, &gpioConfig);

 dmaConfig.priority = DMA_PRIORITY_HIGH;

 dmaConfig.fifoMode = DMA_FIFOMODE_DISABLE;

 dmaConfig.fifoThreshold = DMA_FIFOTHRESHOLD_HALFFULL;

 dmaConfig.memoryBurst = DMA_MEMORYBURST_SINGLE;

 dmaConfig.peripheralBurst = DMA_PERIPHERALBURST_SINGLE;

 dmaConfig.channel = DMA_CHANNEL_0;

 DMA_Config(DMA2_Stream0,&dmaConfig);

 DMA_Enable(DMA2_Stream0);

}

http://www.geehy.com/

Document No.: AN1083

www.geehy.com Page 18

Next is the general configuration of ADC.

Next is the configuration of ADC working mode. It is configured as continuous scan mode, and the

number of conversion channels is set to 3.

Configure the conversion sequence and sampling cycle of each channel.

/** ADC channel Convert configuration */

ADC_ConfigRegularChannel(ADC1, ADC_CHANNEL_0,

ADC_SAMPLETIME_480CYCLES);

ADC_ConfigRegularChannel(ADC1, ADC_CHANNEL_1, 2,

ADC_SAMPLETIME_480CYCLES);

ADC_ConfigRegularChannel(ADC1, ADC_CHANNEL_2, 3,

ADC_SAMPLETIME_480CYCLES);

 ADC_ConfigStructInit(&adcConfig);

 adcConfig.resolution = ADC_RESOLUTION_12BIT;

 adcConfig.scanConvMode = ENABLE;

 adcConfig.continuousConvMode = ENABLE;

 adcConfig.dataAlign = ADC_DATA_ALIGN_RIGHT;

 adcConfig.extTrigEdge = ADC_EXT_TRIG_EDGE_NONE;

 adcConfig.extTrigConv = ADC_EXT_TRIG_CONV_TMR1_CC1;

 adcConfig.nbrOfChannel = ADC_CH_SIZE;

 ADC_Config(ADC1, &adcConfig);

 /** Enable ADC clock */

 RCM_EnableAPB2PeriphClock(RCM_APB2_PERIPH_ADC1);

 /** ADC configuration */

 ADC_Reset();

 adcCommonConfig.mode = ADC_MODE_INDEPENDENT;

 adcCommonConfig.prescaler = ADC_PRESCALER_DIV2;

 adcCommonConfig.accessMode = ADC_ACCESS_MODE_DISABLED;

 adcCommonConfig.twoSampling = ADC_TWO_SAMPLING_20CYCLES;

 ADC_CommonConfig(&adcCommonConfig);

http://www.geehy.com/

Document No.: AN1083

www.geehy.com Page 19

Finally, turn on DMA, enable ADC and trigger the conversion. Then the configuration of

multi-channel scanning is completed. Then directly poll the stored array of ADC converted value to

obtain the scanning value of each channel.

4.3 Hardware method of improving sampling accuracy

1. Ensure that the reference voltage noise is minimized;

2. Minimize the crosstalk interference of IO pins;

3. Add masks to reduce EMI;

4. Arrange and lay analog and digital signals on the PCB separately.

4.4 Software method of improving sampling accuracy

4.4.1 Sampling average

When the anti-interference ability of the hardware is insufficient, we can sacrifice the sampling

rate and use software method to filter, so as to obtain more stable sampling values.

4.4.2 Digital signal filtering

Software can be filtered through digital low-pass, high-pass and other filters. For example, we

know that the noise in the measured signal comes from the 50 Hz power supply line, and through

appropriate digital filtering, only the 50 Hz frequency can be suppressed and the data signal without

this noise can be transmitted.

 /** Config DMA*/

 DMA_Init();

 /** Enable ADC DMA Request*/

 ADC_EnableDMARequest(ADC1);

 /** Enable ADC DMA*/

 ADC_EnableDMA(ADC1);

 /** Enable ADC */

 ADC_Enable(ADC1);

 /** ADC start conversion */

 ADC_SoftwareStartConv(ADC1);

}

http://www.geehy.com/

Document No.: AN1083

www.geehy.com Page 20

4.4.3 ADC software calibration

If the sampling value is relatively fixed, but still has a large difference from the target value, linear

fitting (linear calibration curve) can also be used to make the sampling value closer to the target value.

4.4.3.1 Sample

First, take samples of enough points based on the standard source table, as shown in the

following table (the more the points, the more accurate the fitting).

Table 2 Sampling Table

No. Sampling value (mV) Target value (mV)

1 96.7 100

2 194.5 200

3 498.8 500

4 796 800

5 1495 1500

4.4.3.2 Fitting

Do linear fitting (linear, polynomial or exponential) in mathematical tools (Matlab or Excel, etc.) to

obtain the calibration formula and the value of the correlation coefficient R.

http://www.geehy.com/

Document No.: AN1083

www.geehy.com Page 21

Figure 9 Fitting

4.4.3.3 Calibration

Calibrate the sampling value with the calibration formula obtained in the fitting step.

Table 3 Sampling Table

No. Sampling value (mV) Target value (mV) Calibration Value (mV)

1 96.7 100 100.1

2 194.5 200 197.9

3 498.8 500 502.5

4 796 800 799.9

5 1495 1500 1499.4

http://www.geehy.com/

Document No.: AN1083

www.geehy.com Page 22

5 Version History

Table 4 Document Version History

Date Version Change History

May 31, 2022 1.0 New

http://www.geehy.com/

Document No.: AN1083

www.geehy.com Page 23

Statement

This document is formulated and published by Geehy Semiconductor Co., Ltd. (hereinafter referred to as

“Geehy”). The contents in this document are protected by laws and regulations of trademark, copyright and

software copyright. Geehy reserves the right to make corrections and modifications to this document at any

time. Please read this document carefully before using Geehy products. Once you use the Geehy product, it

means that you (hereinafter referred to as the “users”) have known and accepted all the contents of this

document. Users shall use the Geehy product in accordance with relevant laws and regulations and the

requirements of this document.

1. Ownership

This document can only be used in connection with the corresponding chip products or software products

provided by Geehy. Without the prior permission of Geehy, no unit or individual may copy, transcribe, modify,

edit or disseminate all or part of the contents of this document for any reason or in any form.

The “极海” or “Geehy” words or graphics with “®” or “TM” in this document are trademarks of Geehy. Other

product or service names displayed on Geehy products are the property of their respective owners.

2. No Intellectual Property License

Geehy owns all rights, ownership and intellectual property rights involved in this document.

Geehy shall not be deemed to grant the license or right of any intellectual property to users explicitly or

implicitly due to the sale or distribution of Geehy products or this document.

If any third party’s products, services or intellectual property are involved in this document, it shall not be

deemed that Geehy authorizes users to use the aforesaid third party’s products, services or intellectual property,

unless otherwise agreed in sales order or sales contract.

3. Version Update

Users can obtain the latest document of the corresponding models when ordering Geehy products.

If the contents in this document are inconsistent with Geehy products, the agreement in thesales order or

the sales contract shall prevail.

4. Information Reliability

The relevant data in this document are obtained from batch test by Geehy Laboratory or cooperative

third-party testing organization. However, clerical errors in correction or errors caused by differences in testing

environment may occur inevitably. Therefore, users should understand that Geehy does not bear any

responsibility for such errors that may occur in this document. The relevant data in this document are only used

to guide users as performance parameter reference and do not constitute Geehy’s guarantee for any product

performance.

Users shall select appropriate Geehy products according to their own needs, and effectively verify and test

the applicability of Geehy products to confirm that Geehy products meet their own needs, corresponding

http://www.geehy.com/

Document No.: AN1083

www.geehy.com Page 24

standards, safety or other reliability requirements. If loses are caused to users due to the user’s failure to fully

verify and test Geehy products, Geehy will not bear any responsibility.

5. Legality

 USERS SHALL ABIDE BY ALL APPLICABLE LOCAL LAWS AND REGULATIONS WHEN USING THIS

DOCUMENT AND THE MATCHING GEEHY PRODUCTS. USERS SHALL UNDERSTAND THAT THE

PRODUCTS MAY BE RESTRICTED BY THE EXPORT, RE-EXPORT OR OTHER LAWS OF THE

COUNTIRIES OF THE PRODUCTS SUPPLIERS, GEEHY, GEEHY DISTRIBUTORS AND USERS. USERS

(ON BEHALF OR ITSELF, SUBSIDIARIES AND AFFILIATED ENTERPRISES) SHALL AGREE AND PROMISE

TO ABIDE BY ALL APPLICABLE LAWS AND REGULATIONS ON THE EXPORT AND RE-EXPORT OF

GEEHY PRODUCTS AND/OR TECHNOLOGIES AND DIRECT PRODUCTS.

6. Disclaimer of Warranty

THIS DOCUMENT IS PROVIDED BY GEEHY "AS IS" AND THERE IS NO WARRANTY OF ANY KIND,

EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE WARRANTIES OF

MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, TO THE EXTENT PERMITTED BY

APPLICABLE LAW.

GEEHY WILL BEAR NO RESPONSIBILITY FOR ANY DISPUTES ARISING FROM THE SUBSEQUENT

DESIGN OR USE BY USERS.

7. Limitation of Liability

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL GEEHY

OR ANY OTHER PARTY WHO PROVIDE THE DOCUMENT "AS IS", BE LIABLE FOR DAMAGES,

INCLUDING ANY GENERAL, SPECIAL, DIRECT, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING

OUT OF THE USE OR INABILITY TO USE THE DOCUMENT (INCLUDING BUT NOT LIMITED TO LOSS OF

DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY USERS OR THIRD

PARTIES).

8. Scope of Application

The information in this document replaces the information provided in all previous versions of the

document.

© 2022 Geehy Semiconductor Co., Ltd. - All Rights Reserved

http://www.geehy.com/

